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Abstract 

Differential equations are presented that describe wall 
oscillations of a gas-pressurized thin-walled cylinder 
for cases where variations in the axial direction are 
negligible.  A linear stress/strain relation is assumed.  
Harmonic solutions are obtained.  Limiting forms of 
these solutions are given for cases where the mode 
number, n = 0, 1, 2,…, is moderate and for cases where 
the mode number is large.  In the former case, curvature 
effects are important.  In the latter case, the vibrations 
behave locally like those on a flat plate.  The 
applicability of the harmonic solutions, for evaluating 
the hoop stress induced by a high energy pulsed laser 
beam, is discussed.  The maximum stress induced 
during the initial transient is investigated.  An estimate 
is given for the maximum stress perturbation induced 
by a “slab” type (no axial variation) beam with uniform 
fluence and a width equal to the cylinder diameter.  In 
this case, the estimate for the maximum value of the 
laser induced hoop stress perturbation, , is found 
from 

mσ
� �� �

1 2
m iσ σ = CF pa E ρ�

�

 where, , C, F, p, 
a, , and � are initial pressure induced hoop stress, 

coupling coefficient, fluence, cylinder internal pressure, 
cylinder radius, effective wall modulus of elasticity, 
and wall density, respectively.  The maximum stress 
perturbation induced by slab and circular cross-section 
laser beams, with non-uniform profiles and widths 
which are small compared with cylinder radius, are also 
estimated.  For the case of a narrow slab beam, the 
upper bound on the laser induced hoop stress is found 
from �

iσ
E

m/�i = 0.5(CF0/pa)2 � �E /ρ�  where F0 is center 
line fluence.   

1.  Introduction 

The interaction between a high-energy laser pulse and a 
surface can result in material blow off and impulse 
loading.  The latter may induce vibration and/or 
structural damage.  As a result, high-energy pulse lasers 
are often considered as a component of a missile 
defense system.1 
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Research in the area of pulsed-laser surface interaction 
has focused on the determination of the laser levels 
needed to induce blow-off and determination of the 
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coupling coefficient that relates incident fluence to 
impulse.1  The subsequent effect on the structure has 
received less attention.  In this connection, Sutton2 has 
evaluated the wall vibration induced in a pressurized 
cylinder by a high-energy laser pulse of uniform width.  
However, Sutton’s model neglects curvature effects, 
which, in fact, play a significant role in the structural 
response for beam widths of the order of cylinder 
diameter.  Hence, a study of the vibrational response of 
a gas pressurized cylinder, to a high-energy laser pulse, 
including curvature effects, was undertaken.  A linear 
stress/strain relation is assumed.  Emphasis is placed on 
the case treated by Sutton2, namely, an incident laser 
beam of uniform fluence with width equal to the 
cylinder diameter and infinite axial extent.  (Beams of 
infinite axial extent, with a fluence profile that does not 
vary with axial position, are referred to as “slab” 
beams, herein).  Slab and circular cross-section laser 
beams, with widths that are small compared to the 
cylinder diameter, are also considered.  

 
Figure 1. Notation for evaluation of wall vibrations 

induced in pressurized cylinder due to 
pulsed laser beam. 

The response of the cylinder is expected to consist of an 
initial transient followed by harmonic motion.  In 
Section 2 (Analysis), equations are presented which 
describe the cylinder wall motion in the limit of 
negligible end wall effects.  Harmonic solutions are 
obtained.  In Section 3 (Applications), the applicability 
of these harmonic solutions, for evaluation of laser 
induced vibration, is discussed.  The initial transient, 
caused by the laser pulse, is also discussed.  Estimates 
are given for the initial maximum hoop stress 
perturbation induced by the laser pulse.  A comparison 
of the present results with those of Sutton is given in 
Section 4.  The effect of cylinder translation is 
discussed in Section 5. 

The initial pressure-induced hoop stress �i is 

 i
pa

σ =
h

 (1) 

Let w and v denote small displacements in the radial 
and tangential directions, respectively, of the center of 
an arc element.  These are functions of the initial 
angular position � and time t, and define the 
displacement of the centroid of each arc element from 
its initial (t = 0) position.  Variations of w and v in the 
axial direction are ignored.  This is consistent with the 
neglect of end wall effects (i.e., the assumption a/L<<1) 
and the assumption of a slab beam with a fluence 
profile that does not vary in the axial direction.  The 
neglect of axial derivatives in Eqs. 4 of Fung3 leads to 
momentum conservation equations given by 

2.  Analysis 

We consider wall vibrations of a gas pressurized 
cylinder of radius a, axial length L, thickness h, internal 
pressure p, and wall density � (Fig. 1) and assume  
h/a << 1 and a/L << 1.   

 � � � �

2 2
1 w w v

   εi2 2 2 θω t θ
o

3 421 h v w v
w

3 412 a θθ θ

 � � �

� � �

�
� �

� � �

� � �

�
� �

� �
� �� �
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� �� �
� �
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� �n

v nkn 4=
2w 2n ω /ω - n ko 2

 (4b) 

where 

where 

 2
o 2 2

E 1 E
ω = =

1-ν ρa ρa

�

2
 (2c) 

 
2

2
1 i

1 h
k = 1 + ε +

12 a
� �
� �
� �

n  (5a) 

 
2

i
i i

σ1-ν
ε = σ =

E E�
 (2d) 
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2
1 h
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12 a

� �
� �
� �
� �

 (5b) 

 
2

2
3 i

1 h
k = 1 + ε n + n

12 a
� �
� �
� �

4  (5c) 
Here, �, E, and E� = E/(1-�2) are Poisson’s ratio, the 
modulus of elasticity and an “effective” modulus of 
elasticity, respectively.  The quantity �0 is the 
fundamental cylinder vibration frequency and �i is a 
parameter which characterizes the initial radial strain 
induced by pressurization.  For cases where the 
separation distance between the end walls is kept 
constant during the pressurization process, the axial 
strain is zero and �i is the actual radial strain, wi/a.  If 
the end walls are unconstrained during pressurization, 
an axial stress equal to half the hoop stress is induced, 
and the corresponding radial strain is then  
wi/a = 0.5(2-�)�i/(1-�2). 

 
2

2
4

1 h
k =1 + n

12 a
� �
� �
� �

 (5d) 

The kinetic energy in each mode, at t = 0, is  

 
� �

2
2n
n2

nn

2 KE v
= w 1+

wπρhaω
n

� �� �
� �� �

	 
� �
 (6) 

Equation 6 defines the net (kinetic plus potential) 
energy associated with the vibrational motion.  Let � 
and � denote the perturbation in the tensile (hoop) stress 
and in strain.  These are related by 

Harmonic solutions of Eqs. 2 are now obtained.  
Assume perturbations of the form 

  (3a) nw = w cos nθ sin ω t�   (7) σ  = E ε�
n

n  (3b) nv = Σ v sin nθ sinω t An expression for �, in terms of v and w, is given by 
Eq. A-2, namely 

where n is the vibrational mode number which, for each 
mode, equals the number of sine waves around the 
cylinder circumference.  Substitution of Eqs. 3 into Eqs. 
2 yields 

 
2 2

2

w 1 v 1 w v
ε = +

a a θ θ θ2a

� � �
� �

� � �

� �� � � �
� � � �� �	 
 	 
� �

 (8) 

 

� �

� �

� �

2
2 3 1 4

22
3 2

1 / 2

2
2 ω /ωn ο = 1 ±

2k + n k3 4

4 n k k k k

k n k
1

�

�

�
� �
� �
� �� �

�
�

 (4a) 

Further discussion relating to the computation of strain 
is given in Appendix A. 

Simplified equations for the frequency, velocity ratio, 
and strain associated with the positive and negative 
roots of  Eq. 4a are now given.  We make the realistic 
assumption 
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  iε << 1, 
221 n h

1
12 a

�

��
� �
� �
� �

 (9)  
2

2 2n
n n

nw1
ε = sin nθ sin ω t

2 a

�

� �

� �
� �
� �

 (12c) 

If terms which are small, compared with one, are 
neglected, the dependent variables associated with the 
positive root of Eq. 4a become 

 � �
2+

n oω ω = 1+ n2  (10a) 

These are the equations that describe the fundamental 
vibration mode for a flat plate of width s = �a/n.  This is 
a consequence of the fact that, for large n, the arc length 
between radial velocity nodes, namely �a/n, is small 
compared to the cylinder radius a and thus departs only 
slightly from a flat plate. 

 n nv w n� �

�  (10b) Equations 10c, 11c, and 12c define the strain associated 
with a single mode.  In the case of multiple modes, a 
summation process is needed as discussed in Appendix 
A. � �� �+ + +2

n n n

2+nw1 2 2 2 2n sin nθ + n cos nθ sin ω t
n2 a

ε = 1+ n w a cos nθ sin ω t +

� �
� �� �
� �� �

� �

+
 (10c) 3.  Applications 

Similarly, the dependent variables associated with the 
negative root of Eq 4a become 

� �
� �

22
2 2

2

2

i

n o

n -1 h
n n -1 ε +

12 a
ω ω =

1 + n
�

� �� �
� �� �	 
� �  (11a) 

We now investigate the stress perturbation induced by 
an energetic laser pulse of width s, incident on the 
cylinder surface.  It is assumed that ablation creates an 
impulsive load which results in inward momentum of 
the cylinder surface.  The resulting stress perturbation is 
estimated.  

 n nv w 1/n� �

� �  (11b) 

 
2

2 2n
n n

nw1
ε = sin nθ sin ω t

2 a

�

� �

� �
� �
� �

 (11c) 

Consider the case of a laser pulse of uniform fluence F 
and width s (Fig. 1) incident on the cylinder surface at 
time t = 0�.  Let C represent the coupling coefficient, 
namely the ratio of the induced impulse (radial 
momentum/area) to the incident fluence (energy/area).  
The initial conditions regarding cylinder surface motion 
are then, for t = 0+, 

 w  =  v  = v t = 0 � �   (13a) 

 
w CF

= ( -1) cosθ         
t ρh

 �

�
s θ θ�  (13b) Note that  n

-ω = 0 for n = 0,1.

It can now be shown that the positive and negative roots 
of Eq.4a have the following physical significance.  
Substitution of Eq. 10b into Eq. 2b indicates that �  is 
a consequence of the conservation of v (transverse) 
momentum.  Similarly, substitution of Eq. 11b into Eq. 
2a indicates that  is a consequence of the 
conservation of w (radial) momentum.  

n
�

nω
�

   =  0     sθ θ� � π   (13c) 

where �s  is the value of � corresponding to  the edge of 
the laser beam, 

 � ��-1
sθ = sin s 2a �  (13d) In the limit of large n, namely 1/n << 1, Eqs. 11 become 

 � �
222 2

n o i
n h

ω ω = n ε +
12 a

�

� �� �
� ��
	 
� �

�  (12a) 

 n nv w  1� �

��  (12b) 

The initial condition v v  is clearly 
inconsistent with Eqs. 3 and 4b so that those equations 
cannot be used directly to construct a solution which 
satisfies the initial condition v = 0, except for the case 
of large n. (See Eq. 12b).  There will be an initial 
transient in the region 

t� � � � 0

� �� s  which later spreads to 
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encompass the entire cylinder and evolves into a 
multimode harmonic motion.  It is expected that the 
peak induced stress will occur during the initial 
transient [times of order �t = 0(1)].  An estimate of this 
peak stress is given below for the cases s = 2a and s/a 
<< 1. 

Case s = 2a: 

In view of the initial condition v = 0, an estimate of the 
peak stress, during the initial transient, can be found 
from Eq. 2a by assuming v = 0, therein, and by 
assuming that the vibration remains confined to the 
region θ π 2.�   Thus we assume cylinder wall 
perturbations of the form 

 
CF

w = (-1) cosθsinωt
ρhω

 (14a) 

  (14b) v = 0

 ε = w a  (14c) 

for θ π 2.�   Substitution into Eq. 2a, and neglect of 
terms of order �i and (h/a)2/12 yields 

  (15) 2
0ω = ω σ
2

The maximum strain �m occurs at � = 0 and �t = 3�/2, 
and equals 

 
1 2

m
CF ρ

ε = 
ρh E

 
�

� �
� �
� �

 (16a) 

which may be viewed as providing an upper limit on 
the induced strain.  The maximum hoop stress, due to 
the laser pulse, is found from σ or m m= E ε ,�

 
1 2

m

i

σ CF E
= 

σ pa ρ
 

�� �
� �
� �

 (16b) 

An estimate of the stress perturbation associated with 
the long term harmonic motion is now found.  We 
assume that Eqs. 3 to 10 apply and that the induced 
vibration is primarily the n = 1 mode with energy equal 
to the kinetic energy deposited at t = 0.  This choice 
most closely matches the initial radial velocity profile 
for the region θ π 2,�  and corresponds to the use of 

the quantities  The superscript plus sign 
is henceforth omitted.  The initial kinetic energy is 

+
1w and ω .

KE 1
= 

πρha 4
 

� �1KE
= 2

πρha
 

+
1

 
2

CF

ρh

� �
� �
� �

 (17) 

The energy in mode n = 1 is (Eq. 6) 

 2 2
0 1ω w  (18) 

Equating Eqs. 17 and 18, and recalling Eq. 10, indicates 

 
1 2

1w CF 1 ρ
=  

a ρh 8 E
 

�

� �
� �
� �

 (19a) 

  (19b) 2 21 = ω ω 2
0

The maximum strain and stress are given by 

 
1 2

1 CF ρ
= m

ρh E2
ε  

�

� �
� �
� �

 (20a) 

 
1 2

m

i

1 CF E
= 

σ pa ρ2
 

�� �
� �
� �

 (20b) 

Equation 20b is only a factor 1  less than the value 
in Eq. 16b.  The degree to which Eq. 20b characterizes 
the late time oscillation requires further study. 

2

Case s/a << 1: 

In the present case, the laser spot size is small, relative 
to the cylinder radius, and a flat plate approximation 
can be made (Fig. 2).  The transverse coordinate v is 
now replaced by the Cartesian coordinate y, as 
indicated in Fig. 2.  It is assumed that the perturbation 
is initially confined to the spot area � �y s 2�  and we 
obtain an estimate of the corresponding maximum 
strain.  This estimate is an upper limit since the 
disturbance spreads laterally and thereby attenuates.  
We consider both a “slab” beam (beam fluence profile 
independent of axial position) and a beam of circular 
cross-section.  The late time harmonic motion 
associated with a narrow slab beam is discussed in 
Appendix B. 
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Figure 2. Notation for case of slab laser beam, or 
circular cross-section beam, incident on 
slightly curved cylinder section (d/w << 1). 

Slab Beam:  Using a flat plate approximation, the 
fundamental frequency and mode shape is of the form  

 
i

1/ 21/2 22π pa π h 1
ω = 1+

s ρh 12 s ε

� �� � � �
� �� �� �
	 
	 
 � �

 (21a) 

 � �w ~ cos πy s sin ωt  (21b) 

Equations 21a and 21b are obtained by introducing 

s = �a/n and y = �a  into Eqs. 3a 
and 12.  For convenience, consider an incident fluence 
profile of the form 

 3a 
and 12.  For convenience, consider an incident fluence 
profile of the form 

0
-ω = ω ,  w = w ,  n

  
0

F πy
= cos

F s
 � �

�
� �

�  (22a) 

with energy per unit axial length equal to 

 0
s/2 2F sJ

Fdy=
L π-s/2
� �  (22b) 

Here, J  denotes net beam energy.  The vertical velocity 
at time t = 0 is 

 0CFw πy
 ( 1) cos

t ρh s
 �
� �

�

�
�
� �

�
�  (23) 

(Note that Eq. 23 does not apply for values of 2y/s near 
one, since the magnitude of the fluence in the region is 
below the threshold needed to induce ablation.  
However, this region has a small impact on the induced 
strain.  The use of the product CF to characterize the 
local impulse given to the wall probably requires that 

s/h be of the order 10, or more.)  The induced vibration 
is then 

 0CF πy
w = (-1) cos sin ωt

ρhω s
� �
� �
� �

 (24) 

The maximum induced strain occurs at y = s/2 and 
equals 

 
� �

2 2
0

m
CF1 w 1

ε =  
2 y 2 ρh pa

 �
�

�

� �
� �
� �

 (25a) 

For a given cylinder and fluence F0, the induced 
maximum strain is independent of slab beam width and 
is therefore independent of laser beam energy.  The 
corresponding induced stress is 

 
2

0m

i

CFσ 1 E
= 

σ 2 pa ρ
 

�� �
� �
� �

 (25b) 

Equations 25a and 25b may be viewed as providing 
upper bounds.  Lateral expansion reduces the vibration 
amplitude.  An estimate of this effect is found as 
follows.  For the case of large n and negligible 
thickness effects, Eq. 10 has a solution of the form w ~ 
f(a� – ct) + g(a� + ct) which represents waves with 
velocity � �

1/2

ic = σ ρ  traveling in the +� and –� 
directions, respectively.  After a quarter period, �t = 
�/2, the disturbed area, originally of width s, has 
expanded to a width of 2s.  Equation 25a indicates that, 
for fixed energy (i.e., sF0  =  constant), the maximum 
strain is inversely proportional to the square of the 
beam width.  Thus, the maximum strain at �t = �/2 can 
be estimated from 

 
� �

2
0

m
CF1

ε  = 
8 ρhpa

 (25c) 

which is ¼ the value in Eq. 25a.  The strain, and 
corresponding stress, decrease with further expansion 
of the vibrating region. 

Circular cross-section beam:  We now 
consider a circular cross-section beam with radius s/2.  
Here, the quantity y in Fig. 2 corresponds to a radial 
coordinate.  In order to estimate the initial induced 
stress, in the present case of cylindrical symmetry, it is 
necessary to consider the pressure-induced axial stress, 
as well as the tangential stress �i.  For unrestrained end 
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with limitations similar to those observed for Eq. 23.  
The corresponding vibration and induced strain are 

walls, the pressure-induced axial stress equals �i/2.  
Consistent with the objective of estimating an upper 
limit on the induced stress, we will assume that both the 
axial and the transverse pressure-induced stresses equal 
�i and neglect thickness effects.  In this case the 
induced vertical perturbations are axisymmetric and are 
described by the “membrane” vibration equation 

 � � 0
0

CF 2y
w  = -1   J 2.405  sinωt

ρhω s
� �
� �
� �

 (31a) 

 
2

2
i

ρ w 1 w
  y

σ y y yt

� � �
�

� ��

� �
�
� �

�  (26) 
 � � � �0

1
i

22
CF1 w 1 ρ 2y

= =  J 2.405
2 y 2 ρh σ s

ε 
�

�

� �
� �
� �

 (31b) 

The maximum strain occurs at 2.405 (2y/s) = 1.841 and 
equals which, for zero displacement at y = s/2, has a solution 

of the form 

 0
2y

w ~ J 2.405 sinωt
s

� �
� �
� �

 (27a) 
 

� �
2

0
m

CF
=  0.1693 

ρh pa
ε  

� �
�
� �

�  (32a) 

 
1 2

iσ2
ω = 2.405  

s ρ

� �� �
� � � �
� � � �

 (27b) 

Here again, the maximum strain depends on F0 and is 
independent of beam radius and beam energy.  The 
corresponding stress equals 

 0
2

m

i

CFσ E
=  0.1693 

σ pa ρ
 

�� �
� �� �

 (32b) 
where Jm(x) is a Bessel Function of the first kind, of 
order m.  We note 

 � � � � � �0 1 0J x = (-1)J x  ,     J 2.405 = 0 �   (28a) 

 � � � �1J 1.841 0.5819 max pt    �  (28b) 

  (28c) � �0

2.405

0
x J x dx = 1.2485�

Equations 32a and 32b represent upper bounds.  Lateral 
expansion decreases the strain.  An estimate of this 
effect, for circular beams, is obtained as follows.  
Assume that the edge of the disturbance moves with a 
radial velocity equal to � �

1 2
ic = σ ρ .  After a quarter 

period, the beam diameter increases from s to s(1 + 
�/4.810).  Equation 32a indicates that for fixed energy 
(i.e., s2F0 = constant), the maximum strain varies 
inversely as the fourth power of the diameter.  Hence 
the maximum strain at �t = �/2 can be estimated from 

For convenience, we consider an incident beam of the 
form 

 
0

0
F 2

=  J 2.405 
F s

 �
�
� �

y �
�  (29a)  

� �
2

0
m

CF0.1693
= 

7.469 ρh pa
ε   (32c) 

which contains a net energy of 

 
2

0

2 s
J 2π F y dy  =  0.4317 π 

20

s
�

� �
� �
� �

� F  (29b) 

which is a factor 1/7.469 less than the value in Eq. 32a.  
The strain decreases with further expansion of the 
vibration area. 

The induced vertical velocity at t = 0 is 

 � � 0
0

CFw
= -1   J 2.405 

t ρh s
 �

�

�
�
� �

2y �
�  (30) 

Equations 25b and 32b indicate that, for fixed values of 
the independent variables, the maximum stress induced 
by a narrow slab beam is a factor 2.95 larger than that 
induced by a corresponding small diameter circular 
cross-section beam.  This suggests that the use of the 
narrow slab beam solution to estimate the strain 
induced by a small diameter circular cross-section beam 
(as is done in Ref. 4) will lead to an over estimate of 
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induced strain by, approximately, a factor 2.95.  The 
latter is approximate in view of the assumption that the 
initial axial stress equals the initial tangential stress, �i, 
in the small diameter circular cross-section beam case. 

4.  Comparison with Sutton 

Sutton2 considers a uniform incident beam with a width 
of the order of the cylinder diameter.  He, in effect, 
applies flat plate equations (i.e., the equivalent of using 
Eqs. 12) and thereby neglects curvature effects.  The 
resulting solution can be deduced by taking s = 2a in 
Appendix B.  Sutton excludes the n = 1 mode and 
claims that the n = 2 mode is the major contributor to 
cylinder strain.  His maximum strain results, in present 
notation, are (see Eq. B-8) 

 
2

m
CF 1

= 2
3π ρh pa

ε  � �
� �
� �

 (33a) 

 
2

m

i

σ CF E
= 0.02252

σ pa ρ
 

�� �
� �
� �

 (33b) 

We now compare the fluence required to produce a 
given value of �m/�i as given by the present model 
(Eq. 16b) with the value obtained from the Sutton 
model (Eq. 33b).  Let Fpresent denote the fluence in 
Eq. 16b and let Fsutton denote the fluence in Eq. 33b.  
The ratio of these quantities is 

 sutton

present

1 2

m i

F 1
= 

F 0.02252 σ σ
 � �

�
� �

�  (34a) 

 m i= 21.07          σ σ = 0.1 (34b) 

 m i= 12.17          σ σ = 0.3  (34c) 

Equations 33 overestimate, by an order of magnitude, 
the fluence required to achieve a maximum stress of 
order �m/�i = 0 (0.1).  It should be noted that Eq. 16 
refers to the initial transient whereas Eq. 33a refers to 
the subsequent harmonic motion.  However, a 
comparison of Eq. 33a with Eq. 20b would introduce a 
factor of only 1 2  on the right-hand side of Eq. 34 
and thereby would not significantly affect the 
conclusion.  In summary, the major deficiencies of Ref. 
23, from the viewpoint of the present study, are (a) 
curvature effects are neglected and (b) the exclusive use 

of the quadratic terms in Eq. 8 yields reduced estimates 
of strain and incorrect scaling laws.  

In a more recent study4, Sutton repeats the above 
solution for the case s = 2a.  He also includes a study of 
the case s << 2a, for which the flat plate assumption is 
valid.  Sutton claims that, for the case s << 2a, the n = 2 
mode is the dominant mode with respect to induced 
strain.  This claim appears to be incorrect for reasons 
discussed in Appendix B. 

5.  Cylinder Translation 

The cylinder is assumed, initially, to be stationary in 
space.  The laser pulse at t = 0 will induce a uniform 
translation of the cylinder center of mass.  The solution 
of the present problem, in a coordinate system which 
moves with the center of mass, is discussed herein. 

Consideration of conservation of linear momentum 
indicates that the laser pulse will induce a cylinder 
center of mass velocity V, in the � = 180° direction, 
equal to 

 s2θ  + sin2θρh
V = 

CF 4π
s  (35a) 

 = 1/4  �s = �/2 (35b) 

 = �s/� �s<<1 (35c) 

Note that, for �s = �/2, the magnitude of V is ¼ the 
value of �w/�t, at � = 0, in Eq. 13b.  Also, V becomes 
vanishingly small for small width slab beams (�s<<1). 

Equations 2 are applicable in an inertial frame.  The 
initial conditions for Eqs. 2, in a coordinate system 
fixed with respect to the moving cylinder center of 
mass, become 

 w = v = 0  (36a) 

  
w

= 
t

CF
V - cosθ

ρh

�

�

� �
� �
� �

 �����s (36b) 

 = V cos� �s<����� (36c) 

 
v

t

�

�

= (-1)V sin� ����� (36d) 
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Appendix A:  Strain Expressions Unlike Eqs. 13, Eqs. 36 correspond to zero net linear 
momentum.  The solution of Eqs. 2, with Eqs. 36 as 
initial conditions, defines the perturbations with respect 
to the moving cylinder. 

Strain is related to the perturbations v, w in the 
following section.  Let a�� denote an elementary arc 
section.   

Equations 2, with Eqs. 13 as initial conditions, are 
convenient for finding the perturbations (from the 
initial cylinder location) at small times.  The condition 
that w and v remain small becomes violated with 
increase in time.  However, the solution of Eqs. 2, with 
Eqs. 36 as boundary conditions, is valid for all times, 
t > 0, and is convenient for finding the late time 
solution.  The latter is not explored in the present study. 

6.  Concluding Remarks 

The present study provides an upper bound to the 
maximum hoop stress induced in a thin-walled elastic-
pressurized cylinder by a high-energy laser pulse.  
Further effort is needed to refine these estimates and to 
establish the longer term vibrational behavior of the 
cylinder.  In addition, end-wall effects may need to be 
considered in some cases.  Finally, the relationship 
between the present linear stress/strain estimates and 
structural failure mechanisms, in pressurized cylinders, 
needs further study. 
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Figure A-1. Notation used for evaluation of strain 	. 

The strain induced by a displacement can be expressed 
(Figure A-1) 

 � �� � � � � �
2

2 2 v
1 + ε a∆θ = ∆w + a + w ∆θ + ∆θ

θ
 �

�

� �
� �� �

(A-1) 

Expansion, retention of leading terms and application of 
the limit �  indicates � � 0

 
2 2

w v 1 w 1 v
= +  

a a θ 2 a θ 2 a θ
+ε    � � �

�

� � �

� � � �
� � � �
� � � �

 (A-2) 

In the case of harmonic motion, the linear terms in Eq. 
A-2 dominate for moderate values of n and the 
quadratic terms dominate for large values of n. 

A summation is required when there are multiple 
modes.  The strain associated with moderate values of n 
is (recalling that n nnv w 1� �

� �  for this case) 

 � � � �2
n n

n
ε 1 n w a cos nθ sin ω t� �

� ��  (A-3) 

The maximum strain occurs at � = 0.  For large n, 
where the flat plate approximation applies, the strain is 
found from 

 
2

n
n

n

nw1
ε sin nθ sin ω t

2 a

�

�

� �
� �
� �
� �

 (A-4) 
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If there is a dominant mode number n, the maximum 
strain occurs at n� �� 2.  

The initial conditions, associated with the laser pulse, 
can be expressed 

Equation A-2 defines the tensile strain perturbation 
associated with the mid section of the cylinder wall.  
The total strain at the mid section is found from the sum 

  The strain at the outer surface of the c r 
is found by adding the bending strain 
� �� i . ylinde

�b h a� 2bg. 

� � � �n n
n 0t 0

dw CF
ω w cos nθ 1 f θ

dt ρh

�

��

� � �

� �
� �
� �

� (B-4) 

It follows that 

 � � 0
n n

aρh
-1 ω w =

CF 2
  (B-5a) n � 0Appendix B:  Fourier Analysis 

For the case of an incident laser beam with small width, 
the flat plate approximation (Eq. 12) is applicable.  The 
harmonic motion, which follows the initial transient, 
can then be found by a Fourier analysis.  This solution 
is presented herein.  Superscript minus signs are 
omitted. 

   . (B-5b) na� n � 1 2, , . .

The flat plate approximation for strain is 

 
2

n2
1

ε = nw sin nθ sinω t
2a n=2

�

n
� �
� �� �
�  (B-6) Let �  denote the value of � corresponding to the edge 

of the incident beam, namely, 
s

 �-1
sθ = sin s 2a �  (B-1) 

Recall 

 � �
22

oiε ω = p ρha  (B-7a) 
Define a function f(�) such that 

 f(�) = cos � 
�� � �, (B-2a) and, for � �� �
22 2n 1 and n 12 h a�� �� 1,  

 = 0 �s < ��� � � (B-2b)  n 0 iω = nω ε  (B-7b) 

The function f(�), expressed as a Fourier series, is The strain is then given by 

 � � 0
n

n  1

a
f θ cos nθ

2
a

�

�

� � �  (B-3a)  
� �

2

n2
2ρhpa

ε = a sin nθ sin ω t
CF n=2

�

n
� �
� �� �
�  (B-8) 

where 
Equation 33a, in the body of the report, can be obtained 
by taking n = 2, �s = �/2, �2 = �/4 and �2t = �/2 in Eq. 
B-8.  We now assume that the beam has a narrow width 
so that 

 � �n
 π
π

1
a f θ cos nθ dθ

π �

� �  (B-3b) 

 
1 s= cosθ cos nθ dθ

sπ

 θ
 -θ�  (B-3c)  � �θ = s 2a <<1s  (B-9) 

It follows that for moderate n, 

 
sin 2θ1

θ
π 2

s
s� �

� �
� �� �

   (B-3d) n�1
 n sa = 2θ π  (B-10) 

� � � �sin n-1 θ sin n+1 θ1 s= +
π n-1 n +1

�
�
� �

s n �1�
�    (B-3e) 

Let N donate the mode number for which the arc length 
between radial velocity nodes is equal to s, namely 

 � �sN π a s π 2θ� �  (B-11) 
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For moderate values of n, the above solution does not 
satisfy the initial condition v = 0, as can be seen from 
Eq. 11b.  However, in the limit of small s/(2a), these 
modes have negligible impact on the solution.  The 
above solution represents an asymptotic limit following 
the initial transient.  The degree to which this solution 
is achieved depends on the rate of dissipation of the 
vibrational modes. 

For values of n such that n/N=O(1), 

 n sa = 2θ π  (B-12) 

With further increase in n, the magnitude of an 
approaches zero. Hence we take 

 n sa = 2θ π  n N   (B-13) �

Substitution into Eq. B-8 yields the following 
expressions for strain 

 
� �

2 2
π 3ρhpa

ε = sin nθ sin ω tn22θ CFs

N

n=2

� � �
� � �	� �

�
�
�


(B-14a) 

  (B-14b) 2 N�

Sutton4  uses a Fourier expansion to describe the 
oscillations induced by a laser beam for both the s/(2a) 
= 1 and the s/(2a) << 1 cases.  The deficiency of his 
s/(2a) = 1 solution was discussed in the body of the 
report (Eq. 34).  His treatment of the s/(2/a) << 1 case is 
now briefly noted.  In this case, as in the previous case, 
he claims that the major contribution to the strain 
comes from the n=2 mode.  The corresponding 
maximum strain, using the present model, is 

 
� �

2 m

2
2

, 2
CF2

ε = θ
ρhpaπ

s  (B-16) The inequality in Eq. B-14b follows from the 
observation that each term in the summation, on the 
right hand side of Eq. B-14a, is equal to or less than 
one.  The maximum strain then satisfies the inequality 

 
� �

m

2CF
ε < 

2ρhpa
 (B-15) 

Equation B-16 differs from Eq. 25a by a factor 

�
2

2θ πs �  due to the fact that, after the initial 

transient, the disturbance is distributed throughout the 
cylinder.  Moreover, the Sutton assumption that the n = 
2 mode is the dominant mode, with respect to induced 
strain, appears to be incorrect in view of Eq. B-14a. The magnitude and location of the peak strain can be 

found from a numerical evaluation of the summation in 
Eq. B-14.  Equation B-15 is consistent with Eq. 25a Acknowledgment 

 
� �

m

2CF
ε =

2ρhpa
 (25a) 
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